Package: saens 0.1.2

Ridson Al Farizal P

saens: Small Area Estimation with Cluster Information for Estimation of Non-Sampled Areas

Implementation of small area estimation (Fay-Herriot model) with EBLUP (Empirical Best Linear Unbiased Prediction) Approach for non-sampled area estimation by adding cluster information and assuming that there are similarities among particular areas. See also Rao & Molina (2015, ISBN:978-1-118-73578-7) and Anisa et al. (2013) <doi:10.9790/5728-10121519>.

Authors:Ridson Al Farizal P [aut, cre, cph], Azka Ubaidillah [aut]

saens_0.1.2.tar.gz
saens_0.1.2.zip(r-4.5)saens_0.1.2.zip(r-4.4)saens_0.1.2.zip(r-4.3)
saens_0.1.2.tgz(r-4.4-any)saens_0.1.2.tgz(r-4.3-any)
saens_0.1.2.tar.gz(r-4.5-noble)saens_0.1.2.tar.gz(r-4.4-noble)
saens_0.1.2.tgz(r-4.4-emscripten)saens_0.1.2.tgz(r-4.3-emscripten)
saens.pdf |saens.html
saens/json (API)
NEWS

# Install 'saens' in R:
install.packages('saens', repos = c('https://alfrzlp.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/alfrzlp/sae-ns/issues

Datasets:
  • mys - Mys: mean years of schooling people with disabilities in Papua Island, Indonesia.

On CRAN:

3.78 score 2 stars 1 scripts 417 downloads 4 exports 36 dependencies

Last updated 4 days agofrom:f77d8c4d5a. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-winOKNov 18 2024
R-4.5-linuxOKNov 18 2024
R-4.4-winOKNov 18 2024
R-4.4-macOKNov 18 2024
R-4.3-winOKNov 18 2024
R-4.3-macOKNov 18 2024

Exports:autoploteblupfheblupfh_clustereblupfh_ns

Dependencies:clicolorspacecpp11dplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr